当前我国混凝土配合比计算存在的问题及建议
1 存在问题
1.1 假定容重法
“假定密度法”本来是在绝/对体积法的基础上产生的。混凝土配合比的原理是按照1m3混凝土拌合物由各原材料紧密堆积而成,即1m3混凝土体积等于各原材料绝/对密实体积之和(即不计各原材料内部孔隙)。过去水泥、砂石的表观密度变化不大,所配制混凝土的表观密度变化也不大,因此为了简化试配,对水灰比为0.5 左右的混凝土假定表观密度为2400kg/m3,对高强混凝土假定表观密度为2450kg/m3,试拌后实测差别不大。但是如今普遍使用较大掺量的矿物掺合料,例如粉煤灰表观密度为1.90~2.40g/cm3,磨细矿渣表观密度约为2.60g/cm3,与水泥表观密度的3.0g/cm3左右相比相差就大了,按上述假定的表观密度计算,则体积都会大于1m3,掺合料越多,大得越多。因此从根本上,还是应当使用绝/对体积法。当然,正如任何方法都有一/定的假设,绝/对体积法的假设是忽略水泥水化所减少的那部分水的体积,但是,混凝土在新拌状态时,这部分水相对于混凝土的总体积来说是很少的。为了弥补这部分忽略水的体积,建议用绝/对体积法计算时,不必计入搅拌式挟入的孔隙体积。
1.2 等水胶比法
掺矿物掺合料后的水胶比与未掺矿物掺合料时的水灰比值相同,即简单等量取代。因矿物掺合料密度小,使浆体体积变大,即浆骨比增大,例如,假定普通水泥密度为3.0g/cm3,粉煤灰密度为2.2g/cm3,当以粉煤灰简单取代30%的水泥时,浆体体积就会增加37L。水泥加水硬化后的体积收缩是混凝土的特性之一,加入骨料制成混凝土后,由于骨料的温度变形系数比硬化水泥浆体的温度变形系数小一半多,则对混凝土起稳定体积的作用。浆骨比越小,硬化混凝土收缩值越小;浆骨比增大势必会对混凝土的体积稳定性有影响。此外,因粉煤灰反应速率和反应率低,混凝土早期浆体水灰比增大。例如假定有一原水灰比为0.57的混凝土,如果用粉煤灰简单取代30%的水泥,水胶比仍为0.57,忽略粉煤灰表面吸附水,则早期水灰比就会增大到0.81,同时混凝土强度定会下降;为了保持混凝土强度不变,将水胶比降至0.5,则早期水灰比仍有0.71。
这样大的水灰比就会造成早期较大的孔隙率。因此,掺粉煤灰时,不能采用不变的等水胶比,要降低水胶比才能发挥粉煤灰的作用。
1.3 掺用粉煤灰的超量取代法
由于对矿物掺合料的不了解,混凝土的设计与工程质量管理人员限制矿物掺合料的掺量,于是有关配合比的规范中提出粉煤灰的“超量取代法”,即,在能被接受的掺量范围取代水泥,另多掺一部分取代砂子。这只是一种计算而已,在数量上“代砂”,实际上因为细度量级的差别在功能上粉煤灰并不是砂,不可能“代砂”,仍然是胶凝材料,却因为“超量”而变相增加浆体含量、减小水胶比,但是,在形式上,并未公开实际的粉煤灰掺量和实际的水胶比,在客观上起了遮人耳目的作用。水胶比是混凝土配合比的三要素之一,在原材料相同的情况下,影响混凝土强度的主要因素是有用效拌合水与包括水泥在内的全粉细料的比值,即水胶比。即使掺入传统意义上的惰性材料如磨细石英砂等石粉,超量取代法不能用的原因,还在于对水胶比界定的混乱。例如有的搅拌站在胶凝材料中不计入超量取代的部分,声称掺粉煤灰前后的水灰比不变。已有实例表明,这种做法使得工程中出现问题时,无法从所报的配合比上分析原因。有人认为掺粉煤灰后的混凝土抗裂性改良善不明显,浆骨比增大是其原因之一。建议今后不要再采用这种实际上增加浆骨比的计算方法。
1.4 等水灰比法
基于某些人对水泥认识的局限性,把水泥厂生产的混合材水泥叫做水泥,而在搅拌站生产混凝土时掺的矿物掺合料不算在水泥中,简单地保持水灰比不变,减小用水量,降低水胶比,希望以此保障混凝土强度不变,但是这种做法的结果是水胶比将过大,实际强度会超过期望值。以粉煤灰为例,如果掺入粉煤灰后仍保持水灰比不变,则需降低水胶比。粉煤灰掺量越大,水胶比需降低越多。例如,假定所用水泥密度为3.1g/cm3,原始(FA掺量为0)水灰比为0.50,当密度为2.4g/cm3的粉煤灰掺量为30%时,使水灰比不变的水胶比应为0.40,依此类推,粉煤灰掺量为40%时,水胶比应为0.30。这是忽略了粉煤灰表面吸附水而计算出来的。实际上由于粉煤灰表面对水的吸附,自由水并不像计算的那样大,则所需水胶比可以更大些。同时,这种方法的粉煤灰掺量是按等质量取代水泥掺入的,总胶凝材料质量不变,但因粉煤灰密度比水泥的小,粉煤灰掺量越大,总胶凝材料体积越大,水胶比降得太低时,会影响拌合物的施工性,就需要增加用水量(同时按水胶比增加胶凝材料用量),不仅会增加试配工作量,还会因浆骨比增大而影响混凝土的体积稳定性。
1.5 对骨料颗粒级配与粒形要求的忽略
骨料在混凝土中起骨架作用,主要稳定体积。即使采石场生产的石子经过严格的级配,销售时经过装料、运输中的颠簸和卸料,再加上生产混凝土时的投料,就会大小颗粒分离而重新分布,失去级配。因此绝大多数国家配制混凝土所用的石子都采用两级配或三级配。例如德/国,还在混凝土试配时就将砂石一起连续地级配。我国目前市场供应的石子由于生产工艺落后,也由于大多数生产者的无知,无视砂石标准。号称连续级配,实际上小于10mm的颗粒极少,几乎没有。而且由于我国砂石标准中对针、片状尺寸颗粒限定要求过宽(实际上是迁就落后),使石子的粒形很差。
我国混凝土质量不如西方国家的,原因就是石子质量太差。但是那时我国石子随机取样的松堆空隙率一般都在40%~42%,而理想粒形和级配的石子空隙是约38%。现在,我国市售石子空隙率已达45%以上,甚至超过50%!这就使我国混凝土的水泥用量和用水量比西方国家混凝土水泥用量和用水量约多用20%。已经有一些搅拌站或工程采用了两级配的石子,混凝土的水泥用量可减少约20%。
然而,因对砂石质量的无奈,目前绝大多数混凝土的生产不对骨料提要求,混凝土配合比规范和砂石标准也基本上是迁就落后的现状,造成混凝土无法保障应有的质量。按市场经济的规律,产品的品质都是根据市场需求生产的,符合顾客的要求才能卖得出去。现在没有合格砂石的供应,其根源就是买的人对砂石质量的重要性认识不足。典型的是过去在制定砂石应用标准时,在所规定的级配要求表格之下居然会说明:如级配不合格,实验证明不影响施工,也可使用。( 那么还有必而要定标准吗?只要没限制地增加水泥浆体含量就能做到啊!)
2 建议
(1)鉴于当前混凝土组分的变化,进行混凝土配合比的计算的假定密度法不再适用,建议改用绝/对体积法。
(2)以单粒级石子进行两级配或三级配,生产时分级投料,可得到满予足施工要求的小浆体总量,有利于工程的经济性和耐久性。
(3)当矿物掺合料掺量改变时,应当使用等浆体体积法调整混凝土配合比,以保持混凝土的稳定性。
(本文内容来源于网络,如有侵权请联系删除)